DAREK

Distance Aware Error for Kolmogorov Networks

Masoud Ataei

University of Maine

Masoud.Ataei@maine.edu

Mohammad Javad Khojasteh

Rochester Institute of Technology

mjkeme@rit.edu

Vikas Dhiman

University of Maine

Vikas.Dhiman@maine.edu

Abstract

We present DAREK, a method to compute tight, distance-aware, worst-case error bounds for Kolmogorov-Arnold Networks (KANs). Unlike probabilistic uncertainty estimation, DAREK uses Lipschitz continuity of true functions to derive analytical bounds that increase with distance from training data.

DAREK Abstract Illustration
DAREK Abstract Illustration

Interactive Demo of Newton Polynomial

Lipschitz constant
Newton Polynomial GP
Knots
Newton
Polynomial
Interpolate
Error
GP-mean GP-std

Click and drag any circle. Newton polynomial and interpolation error bounds.

Highlights

Results

Base GIF

Multi-agent simulation when GP model fails.

Base GIF

Multi-agent simulation when DAREK model reaches goal.

Cite This Work

@inproceedings{ataei2025darek,
  title={DAREK-Distance Aware Error for Kolmogorov Networks},
  author={Ataei, Masoud and Khojasteh, Mohammad Javad and Dhiman, Vikas},
  booktitle={ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={1--5},
  year={2025},
  organization={IEEE}
}