Distance Aware Error for Kolmogorov Networks
We present DAREK, a method to compute tight, distance-aware, worst-case error bounds for Kolmogorov-Arnold Networks (KANs). Unlike probabilistic uncertainty estimation, DAREK uses Lipschitz continuity of true functions to derive analytical bounds that increase with distance from training data.
Click and drag any circle. Newton polynomial and interpolation error bounds.
Multi-agent simulation when GP model fails.
Multi-agent simulation when DAREK model reaches goal.
@inproceedings{ataei2025darek, title={DAREK-Distance Aware Error for Kolmogorov Networks}, author={Ataei, Masoud and Khojasteh, Mohammad Javad and Dhiman, Vikas}, booktitle={ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={1--5}, year={2025}, organization={IEEE} }